falcon handsome moderators
09/03/2017 at 12:27
Ace Legona 09/03/2017 at 19:22
Let \(S\) be the sum of all the \(mn\) numbers in the table. Note that after an operation, each number stay the same or turns to its negative. Hence there are at most \(2^{mn}\) tables. So \(S\) can only have finitely many possible values. To make the sum of the numbers in each line nonnegative, just look for a line whose numbers have a negative sum. If no such line exists, then we are done. Otherwise, reverse the sign of all the numbers in the line. Then \(S\) increases. Since \(S\) has finitely many possible values, \(S\) can increase finitely many times. So eventually the sum of the numbers in every line must be nonnegative.

FA FIFA Club World Cup 2018 16/01/2018 at 21:57
Let SS be the sum of all the mnmn numbers in the table. Note that after an operation, each number stay the same or turns to its negative. Hence there are at most 2mn2mn tables. So SS can only have finitely many possible values. To make the sum of the numbers in each line nonnegative, just look for a line whose numbers have a negative sum. If no such line exists, then we are done. Otherwise, reverse the sign of all the numbers in the line. Then SS increases. Since SS has finitely many possible values, SS can increase finitely many times. So eventually the sum of the numbers in every line must be nonnegative

Nguyễn Anh Tuấn 24/03/2017 at 17:49
Let SS be the sum of all the mnmn numbers in the table. Note that after an operation, each number stay the same or turns to its negative. Hence there are at most 2mn2mn tables. So SS can only have finitely many possible values. To make the sum of the numbers in each line nonnegative, just look for a line whose numbers have a negative sum. If no such line exists, then we are done. Otherwise, reverse the sign of all the numbers in the line. Then SS increases. Since SS has finitely many possible values, SS can increase finitely many times. So eventually the sum of the numbers in every line must be nonnegative.

Hà Minh Hiếu 18/06/2017 at 21:09
Let SS be the sum of all the mnmn numbers in the table. Note that after an operation, each number stay the same or turns to its negative. Hence there are at most 2mn2mn tables. So SS can only have finitely many possible values. To make the sum of the numbers in each line nonnegative, just look for a line whose numbers have a negative sum. If no such line exists, then we are done. Otherwise, reverse the sign of all the numbers in the line. Then SS increases. Since SS has finitely many possible values, SS can increase finitely many times. So eventually the sum of the numbers in every line must be nonnegative.

Duy Trần Đức 03/05/2017 at 18:48
Let SS be the sum of all the mnmn numbers in the table. Note that after an operation, each number stay the same or turns to its negative. Hence there are at most 2mn2mn tables. So SS can only have finitely many possible values. To make the sum of the numbers in each line nonnegative, just look for a line whose numbers have a negative sum. If no such line exists, then we are done. Otherwise, reverse the sign of all the numbers in the line. Then SS increases. Since SS has finitely many possible values, SS can increase finitely many times. So eventually the sum of the numbers in every line must be nonnegative.

Vũ Việt Vương 01/04/2017 at 16:54
Let SS be the sum of all the mnmn numbers in the table. Note that after an operation, each number stay the same or turns to its negative. Hence there are at most 2mn2mn tables. So SS can only have finitely many possible values. To make the sum of the numbers in each line nonnegative, just look for a line whose numbers have a negative sum. If no such line exists, then we are done. Otherwise, reverse the sign of all the numbers in the line. Then SS increases. Since SS has finitely many possible values, SS can increase finitely many times. So eventually the sum of the numbers in every line must be nonnegative.