Asuna Yuuki
09/03/2017 at 21:48-
FA FIFA Club World Cup 2018 16/01/2018 at 22:03
ab=a(b+c)b(b+c)=ab+acb2+bc
a+cb+c=b(a+c)b(b+c)=ab+bcb2+bc
In here , we have :
b2 + bc = b2 + bc
ab = ab
If a>b
=> ac > bc (when a,b ∈N
)
=> ab>a+cb+c
If a<b
=> ac < bc (when a,b ∈N
)
=> ab<a+cb+c
-
Asuna Yuuki 09/03/2017 at 21:55
We can see :
If \(\dfrac{a}{b}< 1\)=> a < b
=> ac < ab
=> a. ( b + c ) < b. ( c + a )
=> \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
-
\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab+ac}{b^2+bc}\)
\(\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ab+bc}{b^2+bc}\)
In here , we have :
b2 + bc = b2 + bc
ab = ab
If a>b
=> ac > bc (when a,b \(\in N\))
=> \(\dfrac{a}{b}>\dfrac{a+c}{b+c}\)
If a<b
=> ac < bc (when a,b \(\in N\))
=> \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
-
There aren't enough condition !