Vũ Thị Diệu Linh
10/03/2017 at 21:11-
Taehyungie 10/03/2017 at 21:16
We have:
\(=\) \(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2016}{2017}\)
\(=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot2016}{2\cdot3\cdot4\cdot5\cdot6\cdot...\cdot2017}\)\(=\dfrac{1}{2017}\)
-
→இے๖ۣۜQuỳnh 23/03/2017 at 14:20
(1−12)(1−13)(1−14)...(1−12017)<=>12.23.34....20162017=1.2.3...20162.3.4...2017=12017(1−12)(1−13)(1−14)...(1−12017)<=>12.23.34....20162017=1.2.3...20162.3.4...2017=12017
Value of the expression is 12017
-
Nguyễn Việt Hoàng 10/03/2017 at 21:18
We have : \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}......\dfrac{2016}{2017}\)
\(=\dfrac{1}{2017}\)
-
Faded 26/01/2018 at 12:28
We have:
=
12⋅23⋅34⋅...⋅20162017
=1⋅2⋅3⋅4⋅5⋅...⋅20162⋅3⋅4⋅5⋅6⋅...⋅2017=12017
-
Nguyễn Trần Thành Đạt 10/03/2017 at 21:44
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2017}\right)\\ < =>\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}....\dfrac{2016}{2017}\\ =\dfrac{1.2.3...2016}{2.3.4...2017}\\ =\dfrac{1}{2017}\)
Value of the expression is \(\dfrac{1}{2017}\)
-
35 Tiểu Bảo 03/04/2017 at 21:17
(1−12)(1−13)(1−14)...(1−12017)<=>12.23.34....20162017=1.2.3...20162.3.4...2017=12017(1−12)(1−13)(1−14)...(1−12017)<=>12.23.34....20162017=1.2.3...20162.3.4...2017=12017
Value of the expression is 12017
-
Love people Name Jiang 20/03/2017 at 17:57
We have : \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right).......\left(1-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}......\dfrac{99}{100}\)
\(=\dfrac{1}{100}\)
-
Andrey Trà My 10/03/2017 at 22:49
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2017}\right)=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}...\dfrac{-2016}{2017}=\dfrac{1}{2017}\)