Imaginary numbers
Min Hoang moderators
16/03/2017 at 10:38
-
FA KAKALOTS 03/02/2018 at 12:38
Sign A=(9−3z+z2)(9+3z+z2), we have A=(z2+9)2−(3z)2=z4+9z2+92
.
Therefore (z2−9)A=(z2−9)(z4+9z2+92)=
=(z2)3−(9)3=(z3)2−(32)3=(27)2−36=(33)2−36=0
.
So that A=0
So that
-
mathlove 16/03/2017 at 11:03
Sign \(A=\left(9-3z+z^2\right)\left(9+3z+z^2\right)\), we have \(A=\left(z^2+9\right)^2-\left(3z\right)^2=z^4+9z^2+9^2\).
Therefore \(\left(z^2-9\right)A=\left(z^2-9\right)\left(z^4+9z^2+9^2\right)=\)
\(=\left(z^2\right)^3-\left(9\right)^3=\left(z^3\right)^2-\left(3^2\right)^3=\left(27\right)^2-3^6=\left(3^3\right)^2-3^6=0\).
So that \(A=0\)
So that
4800
questionsWeekly ranking
Tags
games 18
double counting 8
generating functions 2
probabilistic method 1
Polynomial 9
inequality 13
area 17
Equation 9
Primitive Roots Modulo Primes 1
Primitive in Arithmetic Progression 6
Base n Representatioons 4
Pell Equation 1
mixed number 1
Fraction 29
Circle 3
Imaginary numbers 1
Decimal number 2
Volume 2
percentages 6
simple equation 19
absolute value 19
rational numbers 20
Operation of Indices 21
Simulataneous Equation A System of Equations 25
Multiplication of Polynomial 17
divisibility 24
Maximum 5
Minimum 8
Fraction 4
Prime Numbers and Composite Numbers 13
Square Number 26
Even and Odd Numbers 13
GDC and LCM 11
GCD and LCM 12
Permutation and combination 9
combinations 5
interger 7
number 10
Diophantine equations 2
equations 1
Grade 6 19
Power 3
equality 2
maxima-minima 2
square root 1
Polygon 2
IGCSE 1
factorial 1
integers 2