MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • RATIONAL NUMBERS
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 1
  • 2
  • 3
  • 4
  • 5
  • » Last
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG

rational numbers

  • Newest
  • Featured
  • Votes
  • Unanswered

...
Cristiano Ronaldo
19/03/2017 at 11:36
Answers
3
Follow

Evaluate (3+1)(32+1)(34+1)(38+1)(316+1)(332+1).

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:43

    Let A = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

    => 2A = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (38 - 1)(38 + 1)(316 + 1)(332 + 1)

               = (316 - 1)(316 + 1)(332 + 1)

               = (332 - 1)(332 + 1)

               = 364 - 1

    ⇒A=364−12

  • ...
    Phan Thanh Tinh Coordinator 22/03/2017 at 22:30

    Let A = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

    => 2A = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

               = (38 - 1)(38 + 1)(316 + 1)(332 + 1)

               = (316 - 1)(316 + 1)(332 + 1)

               = (332 - 1)(332 + 1)

               = 364 - 1

    \(\Rightarrow A=\dfrac{3^{64}-1}{2}\)

  • ...
    Phan Huy Toàn 15/08/2017 at 08:36

    bạn không nên đăng những câu hỏi linh tinh như 1+1,... trên diễn đàn


...
Cristiano Ronaldo
19/03/2017 at 11:35
Answers
2
Follow

Evaluate \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{1999^2}\right)\left(1-\dfrac{1}{2000^2}\right)\)

[Hint: a2 - b2 = (a-b)(a+b)]

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:43

    (1−122)(1−132)(1−142)...(1−119992)(1−120002)=1×32×2×2×43×3×3×54×4×...×1999×20012000×2000

    =(1×2×3×...×1999)(3×4×5×...×2001)(2×3×4×...×2000)(2×3×4×...×2000)

    =1×20012000×2=20014000

  • ...
    Phan Duy Truong ❀◕ ‿ ◕❀   26/03/2017 at 08:46

    \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{1999^2}\right)\left(1-\dfrac{1}{2000^2}\right)=\dfrac{1\times3}{2\times2}\times\dfrac{2\times4}{3\times3}\times\dfrac{3\times5}{4\times4}\times...\times\dfrac{1999\times2001}{2000\times2000}\)

    \(=\dfrac{\left(1\times2\times3\times...\times1999\right)\left(3\times4\times5\times...\times2001\right)}{\left(2\times3\times4\times...\times2000\right)\left(2\times3\times4\times...\times2000\right)}\)

    \(=\dfrac{1\times2001}{2000\times2}=\dfrac{2001}{4000}\)


...
Cristiano Ronaldo
19/03/2017 at 11:33
Answers
0
Follow

Find the last 4 digits in the addition of

1 + 11 + 111 + 1111 + 11111 + 111111 + ...+ 111...111(1004 1s).

rational numbers


...
Cristiano Ronaldo
19/03/2017 at 11:32
Answers
2
Follow

Evaluate \(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+..+\dfrac{1}{1+2+3+...+50}\)

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:43

    Consider the following expression :

    11+2+3+..+n=1n(n+1)2=2n(n+1)

    So we have :

    11+2+11+2+3+11+2+3+4+...+11+2+3+4+...+50

    =22.3+23.4+24.5+...+250.51

    =2(12.3+13.4+14.5+...+150.51)

    =2(12−13+13−14+14−15+...+150−151)

    =2(12−151)=1−251=4951

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 17:53

    Consider the following expression :

    \(\dfrac{1}{1+2+3+..+n}=\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{2}{n\left(n+1\right)}\)

    So we have :

    \(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+50}\)\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{50.51}\)

    \(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{50.51}\right)\)

    \(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)

    \(=2\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=1-\dfrac{2}{51}=\dfrac{49}{51}\)


...
Cristiano Ronaldo
19/03/2017 at 11:31
Answers
2
Follow

Evaluate 

\(\left[1\times\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\times...\times\left(1-\dfrac{1}{2000}\right)\right]\times2000\)

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:44

    [1(1−12)(1−13)(1−14)(1−15)...(1−12000)]×2000

    =12.23.34.45....19992000.2000=1

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 17:57

    \(\left[1\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)...\left(1-\dfrac{1}{2000}\right)\right]\times2000\)

    \(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{1999}{2000}.2000=1\)


...
Cristiano Ronaldo
19/03/2017 at 10:59
Answers
0
Follow

Evaluate \(\left(1+\dfrac{1}{53}+\dfrac{1}{59}+\dfrac{1}{61}\right)\times\left(\dfrac{1}{53}+\dfrac{1}{59}+\dfrac{1}{61}+\dfrac{1}{67}\right)\times\left(1+\dfrac{1}{53}+\dfrac{1}{59}+\dfrac{1}{61}+\dfrac{1}{67}\right)\times\left(\dfrac{1}{53}+\dfrac{1}{59}+\dfrac{1}{61}\right)\)

rational numbers


...
Cristiano Ronaldo
19/03/2017 at 10:56
Answers
2
Follow

Evaluate \(\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+...+\left(\dfrac{1}{100}+\dfrac{2}{100}+\dfrac{3}{100}+...+\dfrac{99}{100}\right)\)

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:44

    Consider the following expression :

    1n+1+2n+1+3n+1+...+nn+1

    =n(n+1)2n+1=n2

    So we have :

    12+(13+23)+(14+24+34)+(15+25+35+45)+...+(1100+2100+3100+...+99100)

    =12+22+32+42+...+992

    =99.10022=99.1004=99.25=2475

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 18:01

    Consider the following expression :

    \(\dfrac{1}{n+1}+\dfrac{2}{n+1}+\dfrac{3}{n+1}+...+\dfrac{n}{n+1}\)

    \(=\dfrac{\dfrac{n\left(n+1\right)}{2}}{n+1}=\dfrac{n}{2}\)

    So we have :

    \(\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+...+\left(\dfrac{1}{100}+\dfrac{2}{100}+\dfrac{3}{100}+...+\dfrac{99}{100}\right)\)

    \(=\dfrac{1}{2}+\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{99}{2}\)

    \(=\dfrac{\dfrac{99.100}{2}}{2}=\dfrac{99.100}{4}=99.25=2475\)


...
Cristiano Ronaldo
19/03/2017 at 10:54
Answers
3
Follow

What is the of n in \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{1999}{2000}?\)

rational numbers

  • ...
    Nguyễn Kim Ngưu 19/03/2017 at 11:00

    \(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n.\left(n+1\right)}\)

    \(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{n}-\dfrac{1}{n-1}\)

    \(A=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}=\dfrac{1999}{2000}\Rightarrow n.2000=\left(n+1\right).1999\)

    \(\Leftrightarrow1999n+n=1999n+1999\Rightarrow n=1999\)

    Cristiano Ronaldo selected this answer.
  • ...
    Nguyệt Nguyệt 19/03/2017 at 12:14

    We have :

    \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{1999}{2000}\)
    = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{1999}{2000}\)
    = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1999}{2000}\)
    =  \(1-\dfrac{1}{n+1}=\dfrac{1999}{2000}\)
    = > \(\dfrac{1}{n+1}=1-\dfrac{1999}{2000}\)
    <=> \(\dfrac{1}{n+1}=\dfrac{1}{2000}\)
    => n + 1 = 2000
    n = 2000 - 1
    n = 1999
    Vậy n = 1999.

  • ...
    FA KAKALOTS 03/02/2018 at 12:44

    A=12+16+112+...+1n(n+1)=11.2+12.3+...+1n.(n+1)

    A=1−12+12−13+..+1n−1n−1

    A=1−1n+1=nn+1=19992000⇒n.2000=(n+1).1999

    ⇔1999n+n=1999n+1999⇒n=1999

    We have :

    12+16+112+...+1n.(n+1)=19992000


    = 11.2+12.3+13.4+...+1n.(n+1)=19992000
    = 1−12+12−13+13−14+...+1n−1n+1=19992000
    =  1−1n+1=19992000
    = > 1n+1=1−19992000
    <=> 1n+1=12000
    => n + 1 = 2000
    n = 2000 - 1
    n = 1999
    Vậy n = 1999.


...
Cristiano Ronaldo
19/03/2017 at 10:52
Answers
2
Follow

Evaluate 1+2+22+23+24+...+22000.

rational numbers

  • ...
    caubevodanh3 19/03/2017 at 11:31

    Put : A= 1 +2 + 22 + 23 + ..... + 22000

     => 2A = 2 x ( 1+ 2 + 22 + 23 +....+ 22000 )

         2A = 2 + 22 + 23 + ..... + 22001

    => 2A-A= (2 + 22 + 23 + ..... + 22001)- ( 1 +2 + 22 + 23 + ..... + 22000)

    => A = 22001 - 1

  • ...
    FA KAKALOTS 03/02/2018 at 12:45

    Put : A= 1 +2 + 22 + 23 + ..... + 22000

     => 2A = 2 x ( 1+ 2 + 22 + 23 +....+ 22000 )

         2A = 2 + 22 + 23 + ..... + 22001

    => 2A-A= (2 + 22 + 23 + ..... + 22001)- ( 1 +2 + 22 + 23 + ..... + 22000)

    => A = 22001 - 1


...
Cristiano Ronaldo
19/03/2017 at 10:51
Answers
2
Follow

Evaluate 2000 x \(\left(1+\dfrac{1}{2}\right)\)x\(\left(1+\dfrac{1}{3}\right)\)x\(\left(1+\dfrac{1}{4}\right)\)x...x\(\left(1+\dfrac{1}{2000}\right)\)

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:45

    2000(1+12)(1+13)(1+14)...(1+12000)

    =2000.32.43.54....20012000=2000.20012

    = 1000.2001 = 2001000

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 18:05

    \(2000\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(1+\dfrac{1}{2000}\right)\)

    \(=2000.\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{2001}{2000}=2000.\dfrac{2001}{2}\)= 1000.2001 = 2001000


...
Cristiano Ronaldo
19/03/2017 at 10:49
Answers
0
Follow

The value of (100 + 99 + 98 - 97 - 96 + 95 + 94 + 93 - 92 - 91 + .. + 10 + 9 + 8 - 7 - 6 + 5 +4 + 3 - 2 - 1 ) is

rational numbers


...
Cristiano Ronaldo
19/03/2017 at 10:47
Answers
2
Follow

Evaluate \(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{67\times70}\)

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:45

    Gọi biểu thức đó là A. Ta có:
    A=11.4+14.7+17.10+...+167.70
    3A = 3.(11.4+14.7+17.10+...+167.70)
    3A = 31.4+34.7+37.10+...+367.70
    3A = 1−14+14−17+17−110+...+167−170
    3A = 1−170
    3A = 6970
    => A = 6970:3
    A = 6970.13
    A = 2370

  • ...
    Nguyệt Nguyệt 19/03/2017 at 18:18

    Gọi biểu thức đó là A. Ta có:
    A=\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{67.70}\)
    3A = \(3.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{67.70}\right)\)
    3A = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{67.70}\)
    3A = \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{67}-\dfrac{1}{70}\)
    3A = \(1-\dfrac{1}{70}\)
    3A = \(\dfrac{69}{70}\)
    => A = \(\dfrac{69}{70}:3\)
    A = \(\dfrac{69}{70}.\dfrac{1}{3}\)
    A = \(\dfrac{23}{70}\)


...
Cristiano Ronaldo
19/03/2017 at 10:46
Answers
2
Follow

It given \(A=\dfrac{3000\times3003}{3001\times3002}\),\(B=\dfrac{3000\times3002}{3001\times3003}\)and \(C=\dfrac{3000\times3001}{3002\times3003}\), then

(A) C < B < A

(B) A < C < B

(C) C < A < B

(D) A < B < C

(E) B < A < C

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:46

    We have :

    3000.30013002.3003<3000.30023002.3003<3000.30023001.3003<3000.30033001.3003<3000.30033001.3002

    (because 3000.3001 < 3000.3002 < 3000.3003 ;

                   3002.3003 > 3001.3003 > 3001.3002)

    Hence C < B < A

    So the correct answer is (A)

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 18:12

    We have :

    \(\dfrac{3000.3001}{3002.3003}< \dfrac{3000.3002}{3002.3003}< \dfrac{3000.3002}{3001.3003}< \dfrac{3000.3003}{3001.3003}< \dfrac{3000.3003}{3001.3002}\)

    (because 3000.3001 < 3000.3002 < 3000.3003 ;

                   3002.3003 > 3001.3003 > 3001.3002)

    Hence C < B < A

    So the correct answer is (A)


...
steve jobs
17/03/2017 at 14:19
Answers
4
Follow

111...111 (2002 1s) 555...555 (2002 5s) is the product of two consecutive odd numbers.

Find the sum of these two odd numbers.

rational numbers

  • ...
    Dung Trần Thùy 18/03/2017 at 18:54

    Hi Steve Jobs! First; you can see : 3 . 5 = 15 ; 33 . 35 = 1155;

    333 . 335 = 111555, ... It's the first step to solve ur problem.

    Now, we have to prove that expression equal 333...3 . 333....5.

    We have :

    \(111...11111111111555...555555555\)

    ( 2002 1s)                      (2002 5s)

    =111.....11000....0 + 555.......5 

    ( 2002 1s) (2002 0s) (2002 5s)

    = 1111.....111 . ( 10000...000 + 5 )

        ( 2002 1s)          ( 2002 0s)

    = 111....111 .  10000...00005

        ( 2002 1s)       (2001 0s )

    = 1111...1111 . ( 3 . 333...33335 )

      ( 2002 1s)               (2001 3s )

    = 333......3333 . 333333...3335

           ( 2002 3s)     ( 2001 3s )

    The sum of these 2 numbers is 6666......68

                                                      (2002 6s)

    Sorry if my English is bad :>

    steve jobs selected this answer.
  • ...
    Lê Anh Tú 25/03/2017 at 22:18

    Hi Steve Jobs! First; you can see : 3 . 5 = 15 ; 33 . 35 = 1155;

    333 . 335 = 111555, ... It's the first step to solve ur problem.

    Now, we have to prove that expression equal 333...3 . 333....5.

    We have :

    111...11111111111555...555555555111...11111111111555...555555555

    ( 2002 1s)                      (2002 5s)

    =111.....11000....0 + 555.......5 

    ( 2002 1s) (2002 0s) (2002 5s)

    = 1111.....111 . ( 10000...000 + 5 )

        ( 2002 1s)          ( 2002 0s)

    = 111....111 .  10000...00005

        ( 2002 1s)       (2001 0s )

    = 1111...1111 . ( 3 . 333...33335 )

      ( 2002 1s)               (2001 3s )

    = 333......3333 . 333333...3335

           ( 2002 3s)     ( 2001 3s )

    The sum of these 2 numbers is 6666......68

                                                      (2002 6s)

  • ...
    FA KAKALOTS 03/02/2018 at 12:46

    Hi Steve Jobs! First; you can see : 3 . 5 = 15 ; 33 . 35 = 1155;

    333 . 335 = 111555, ... It's the first step to solve ur problem.

    Now, we have to prove that expression equal 333...3 . 333....5.

    We have :

    111...11111111111555...555555555

    ( 2002 1s)                      (2002 5s)

    =111.....11000....0 + 555.......5 

    ( 2002 1s) (2002 0s) (2002 5s)

    = 1111.....111 . ( 10000...000 + 5 )

        ( 2002 1s)          ( 2002 0s)

    = 111....111 .  10000...00005

        ( 2002 1s)       (2001 0s )

    = 1111...1111 . ( 3 . 333...33335 )

      ( 2002 1s)               (2001 3s )

    = 333......3333 . 333333...3335

           ( 2002 3s)     ( 2001 3s )

    The sum of these 2 numbers is 6666......68

                                                      (2002 6s)

    Sorry if my English is bad :>


...
steve jobs
17/03/2017 at 14:13
Answers
3
Follow

Evaluate 3+32+33+34+...+32000.

rational numbers

  • ...
    Trần Quang Linh 17/03/2017 at 15:53

    A=3+32+33+...+32000

    3A=32+33+34+...+32001

    2A=32001-3

    A=\(\dfrac{3^{2001}-3}{2}\)

    steve jobs selected this answer.
  • ...
    Love people Name Jiang 17/03/2017 at 18:41

    Ta có : 3 + 32 + 33 + ...... + 32000

    => 3A = 32 + 33 + 34 + ...... + 32001

    => 3A - A = 32001 - 3

    => 2A = 32001 - 3

    => A = \(\dfrac{3^{2001}-3}{2}\)

    Good

  • ...
    FA KAKALOTS 03/02/2018 at 12:46

    Ta có : 3 + 32 + 33 + ...... + 32000

    => 3A = 32 + 33 + 34 + ...... + 32001

    => 3A - A = 32001 - 3

    => 2A = 32001 - 3

    => A = 32001−32

    Good


...
steve jobs
17/03/2017 at 14:12
Answers
3
Follow

Evaluate \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}.\)

rational numbers

  • ...
    Trần Quang Linh 17/03/2017 at 15:59

    A=\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)

    128A=64+32+16+8+4+2+1

    128A=127

    A=\(\dfrac{127}{128}\)

    steve jobs selected this answer.
  • ...
    Love people Name Jiang 17/03/2017 at 18:43

    For : \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)

    \(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{128}\)

    \(\Rightarrow2A-A=1-\dfrac{1}{128}\)

    \(\Rightarrow A=\dfrac{127}{128}\)

  • ...
    FA KAKALOTS 03/02/2018 at 12:46

    For : A=12+14+18+132+164+1128

    ⇒2A=1+12+14+.....+1128

    ⇒2A−A=1−1128

    ⇒A=127128


...
steve jobs
17/03/2017 at 14:10
Answers
4
Follow

Evaluate

\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{999\times1000}.\)

rational numbers

  • ...
    Trần Quang Linh 17/03/2017 at 16:02

    A=\(\dfrac{1}{1x2}+\dfrac{1}{2x3}+...+\dfrac{1}{999x1000}\)

    A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

    A=\(1-\dfrac{1}{1000}\)

    A=\(\dfrac{999}{1000}\)

    steve jobs selected this answer.
  • ...
    Love people Name Jiang 17/03/2017 at 18:37

    \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{999999.1000}\)

    \(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.......+\dfrac{1}{999}-\dfrac{1}{1000}\)

    \(=1-\dfrac{1}{1000}\)

    \(=\dfrac{999}{1000}\)

  • ...
    Đại Việt 17/03/2017 at 21:09

    Call A=\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{999+1000}\)

    We have A=\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{999\cdot1000}\)

    \(\Rightarrow\)A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

    \(\Rightarrow\)A=\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{999}-\dfrac{1}{999}\right)-\dfrac{1}{1000}\)\(\Rightarrow\) A=\(1-\dfrac{1}{1000}=\dfrac{1000}{1000}-\dfrac{1}{1000}=\dfrac{999}{1000}\)


...
steve jobs
17/03/2017 at 14:09
Answers
2
Follow

Evaluate \(\left(\dfrac{1}{257}+\dfrac{1}{259}+\dfrac{1}{263}+\dfrac{1}{269}+\dfrac{1}{271}\right)\)x\(\left(\dfrac{1}{259}+\dfrac{1}{263}+\dfrac{1}{269}+\dfrac{1}{271}+\dfrac{1}{277}\right)\)

-\(\left(\dfrac{1}{257}+\dfrac{1}{259}+\dfrac{1}{263}+\dfrac{1}{269}+\dfrac{1}{271}+\dfrac{1}{277}\right)\)x\(\left(\dfrac{1}{259}+\dfrac{1}{263}+\dfrac{1}{269}+\dfrac{1}{271}\right)\)

rational numbers

  • ...
    FA KAKALOTS 03/02/2018 at 12:47

    It is too long so I don't want to write too much

    use The nature of multiplication with addition to divide 1277

    The answer is 1277x257

  • ...
    Trần Quang Linh 17/03/2017 at 16:21

    It is too long so I don't want to write too much

    use The nature of multiplication with addition to divide \(\dfrac{1}{277}\)

    The answer is \(\dfrac{1}{277x257}\)


...
steve jobs
17/03/2017 at 14:03
Answers
0
Follow

Evaluate \(\dfrac{1\times3\times5+2\times6\times10+3\times9\times15+...+10\times30\times50}{1\times2\times3+2\times4\times6+3\times6\times9+...+10\times20\times30}\)

rational numbers


...
steve jobs
17/03/2017 at 13:58
Answers
2
Follow

Rank \(A=\dfrac{2000.2003}{2001.2002}\), \(B=\dfrac{2000.2002}{2001.2003}\)and \(C=\dfrac{2000.2001}{2002.2003}\)in ascending order.

rational numbers

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 19:10

    \(\dfrac{2000.2001}{2002.2003}< \dfrac{2000.2002}{2002.2003}< \dfrac{2000.2002}{2001.2003}< \dfrac{2000.2003}{2001.2003}< \dfrac{2000.2003}{2001.2002}\)

    => C < B < A

    Selected by MathYouLike
  • ...
    FA KAKALOTS 03/02/2018 at 12:48

    2000.20012002.2003<2000.20022002.2003<2000.20022001.2003<2000.20032001.2003<2000.20032001.2002

    => C < B < A


4800

questions

Weekly ranking

  • ...

    Nguyen The Thao

    This week's point: . Total: 0
  • ...

    nguyễn ngọc bảo hân

    This week's point: . Total: 0
  • ...

    Chibi

    This week's point: . Total: 7
  • ...

    Grand Master

    This week's point: . Total: 0
  • ...

    Nguyễn Huy Thắng

    This week's point: . Total: 159
  • ...

    Mây Bay Theo Gió

    This week's point: . Total: 0
  • ...

    gggggggg

    This week's point: . Total: 0
  • ...

    Nguyễn Huy Thắng

    This week's point: . Total: 0
  • ...

    James Blizabeth

    This week's point: . Total: 0
  • ...

    Mai Marry

    This week's point: . Total: 0

Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 17  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
© 2016 MATHYOULIKE
Crafted with by OLM.VN