equations
-
John 10/04/2017 at 15:29
We have:
\(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Rightarrow8=\left(3-z\right)\left(3-x\right)\left(3-y\right)\) (1)
Since \(\left(3-x\right)+\left(3-y\right)+\left(3-z\right)=9-\left(x+y+z\right)=9-3=6\) (2)
From (1) and (2) we infer \(\left(x,y,z\right)\) would be (1,1,1), (-5,4,4), (4,-5,4), (4,4,-5).
Carter selected this answer. -
FA KAKALOTS 08/02/2018 at 22:03
We have:
(x+y+z)3−(x3+y3+z3)=3(x+y)(y+z)(z+x)
⇒8=(3−z)(3−x)(3−y)
(1)
Since (3−x)+(3−y)+(3−z)=9−(x+y+z)=9−3=6
(2)
From (1) and (2) we infer (x,y,z)
would be (1,1,1), (-5,4,4), (4,-5,4), (4,4,-5).
4694
questionsWeekly ranking
Tags
games 18
double counting 8
generating functions 2
probabilistic method 1
Polynomial 8
inequality 11
area 16
Equation 8
Primitive Roots Modulo Primes 1
Primitive in Arithmetic Progression 6
Base n Representatioons 4
Pell Equation 1
mixed number 1
Fraction 29
Circle 3
Imaginary numbers 1
Decimal number 2
Volume 2
percentages 6
simple equation 19
absolute value 19
rational numbers 20
Operation of Indices 21
Simulataneous Equation A System of Equations 25
Multiplication of Polynomial 17
divisibility 24
Maximum 5
Minimum 6
Fraction 4
Prime Numbers and Composite Numbers 13
Square Number 26
Even and Odd Numbers 13
GDC and LCM 11
GCD and LCM 12
Permutation and combination 9
combinations 5
interger 7
number 10
Diophantine equations 2
equations 1
Grade 6 19
Power 3
equality 2
maxima-minima 2
square root 1
Polygon 2
IGCSE 1
factorial 1
integers 1