MathYouLike MathYouLike Practice Q & A
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  • Practice
  • Q & A
  •    Sign up
  • POLYNOMIAL
  • Newest
  • Featured
  • Votes
  • Unanswered
  • First «
  • 1
  • 2
  • 3
  • 4
  • 5
  • » Last

Polynomial

  • Unanswered
  • Votes
  • Featured
  • Newest
...
Uchiha Sasuke
28/03/2019 at 10:52
Votes Answers Follow

Given a polynomial f(x) such that \(x^3+2x^2\left(4y-1\right)-4xy^2-f\left(x\right)=-5^3+4xy\left(2x-y\right)\). The value of \(f\left(\dfrac{f\left(-5\right)}{5^2}\right)\)=...

Polynomial

...
LOL
24/07/2018 at 13:54
Votes Answers Follow

When the polynomial f (x) is divisible by x + 2 and x2 + 1, it leaves the remainders 7 and x + 4 respectively. What is the remainder when f (x) is divided by (x + 2)(x2 + 4)

Polynomial
  • ...
    Huỳnh Anh Phương 28/07/2018 at 03:10

    you have a wrong question

    it's divisible when it's remander 0.


...
LOL
24/07/2018 at 13:52
Votes Answers Follow

When the polynomial f (x) is divisible by x + 2 and x2 + 1, it leaves the reminders 7 and x + 4 respectively. What is the remainder when f (x) is divided by (x + 2)(x2 + 1) 

Polynomial
  • ...
    Lê Anh Duy 24/07/2018 at 17:08

    I think you should say: f(x) is divided by ..., because f(x) is divisible when it doesn't have any remainder.


...
Mr Puppy
23/07/2018 at 10:39
Votes Answers Follow

Suppose that the polynomial \(f\left(x\right)=2x^5-9x^3+2x^2+9x-3\) has 5 solutions x1 ; x2; x3; x4; x5. The other polynomial \(k\left(x\right)=x^2-4\). Find the value of \(P=k\left(x_1\right)\times k\left(x_2\right)\times k\left(x_3\right)\times k\left(x_4\right)\times k\left(x_5\right)\).

Polynomial

...
Uchiha Sasuke
25/05/2018 at 08:52
Votes Answers Follow

Suppose that the polynomial \(f\left(x\right)=x^5-x^4-4x^3+2x^2+4x+1\) has 5 solutions \(x_1;x_2;x_3;x_4;x_5\).The other polynomial \(K\left(x\right)=x^2-4\). Find the value of P=K(\(x_1\))×K(\(x_2\))×K(\(x_3\))×K(\(x_4\))×K(\(x_5\))

Polynomial

...
Uchiha Sasuke
25/05/2018 at 08:46
Votes Answers Follow

Suppose that the polynomial \(f\left(x\right)=2x^5-9x^3+2x^2+9x-3\) has 5 solutions \(x_1;x_2;x_3;x_4;x_5\). The other polynomial \(K\left(x\right)=x^2-4\). Find the value of \(P=K\left(X_1\right)\times K\left(X_2\right)\times K\left(X_3\right)\times K\left(X_4\right)\times K\left(X_5\right)\)

Polynomial

...
Uchiha Sasuke
25/05/2018 at 08:39
Votes Answers Follow

Let P(x) be the polynomial given by \(P\left(x\right)=\left(2+x+2x^3\right)^{15}\). Suppose that \(P\left(x\right)=a_0+a_1x+a_2x^2+...+a_{45}x^{45}\).The value of \(S=a_1-a_2+a_3-a_4+...-a_{44}+a_{45}\).

Polynomial
  • ...
    Uchiha Sasuke 26/05/2018 at 01:19

    Thank you very much yeu

  • ...
    Dao Trong Luan Coodinator 25/05/2018 at 12:30

    P(x) = a0 + a1x + a2x2 + ... + a45x45

    => P(1) = a0 + a1 + a2 + ... + a45 = (2 + 1 + 2)15 = 515

    => P(-1) = a0 - a1 + a2 - ... - a45 = (2 - 1 - 2)15 = (-1)15

    ==> P(1) - P(-1) = 2a1 + 2a3 + ... + 2a45 = 515 + 1

            P(1) + P(-1) = 2a0 + 2a2 + ... + 2a44 = 515 - 1

    => (a1 + a3 + ... + a45) - (a0 + a2 + ... + a44) = \(\dfrac{5^{15}+1-5^{15}+1}{2}=1\)

    => S = -a0 + a1 - a2 + .... - a44 + a45 = 1

    P/s: Not S in the topic banh


...
Uchiha Sasuke
26/01/2018 at 07:48
Votes Answers Follow

Given a third degree polynomial P (x). Find the coefficient of x3 of P (x) such that P(0) = 10; P(1) = 12; P(2) = 4; P(3) = 1 

Polynomial

...
tranthuydung
09/03/2017 at 18:52
Votes Answers Follow

Let P(x) be a polynomial of degree 2015.

Suppose P(n)=\(\dfrac{n}{n+1}\) for all n = 0, 1 , 2 ,..., 2015.

The value of P(2016) is ...

Polynomial
  • ...
    John 11/03/2017 at 09:07

    Let \(Q\left(x\right)=\left(x+1\right)P\left(x\right)-x\),  (*)

    since \(P\left(n\right)=\dfrac{n}{n+1}\) we infer:

     \(Q\left(n\right)=\left(n+1\right)P\left(n\right)-n=0\) for \(n=0,1,..,2015\).

    Because P is a polynomial of dgree 2016, Q is a polynomial of dgree 2016. Q has 2016 solutions (0, 1, .. , 2015) so Q can be expressed in a form:

      \(Q\left(x\right)=a\left(x-0\right)\left(x-1\right)...\left(x-2015\right)\)   (**)

    In other hand, in (*) we set x = -1 then  \(Q\left(-1\right)=1\). And replace to (**) we have:

      \(1=Q\left(-1\right)=a\left(-1\right)\left(-2\right)...\left(-2016\right)\)

     \(\Rightarrow a=\dfrac{1}{2016!}\)

    Finally \(Q\left(x\right)=\dfrac{1}{2016!}\left(x-0\right)\left(x-1\right)...\left(x-2015\right)\)

    \(\Rightarrow Q\left(2016\right)=\dfrac{1}{2016!}2016.2015...1=1\)

    from (*) \(Q\left(2016\right)=\left(2016+1\right)P\left(2016\right)-2016\)

    \(\Rightarrow\left(2016+1\right)P\left(2016\right)-2016=1\)

    \(\Rightarrow P\left(2016\right)=\dfrac{2017}{2017}=1\)

    tranthuydung selected this answer.
  • ...
    FA KAKALOTS 28/01/2018 at 22:05

    Let Q(x)=(x+1)P(x)−x

    ,  (*)

    since P(n)=nn+1

     we infer:

     Q(n)=(n+1)P(n)−n=0

     for n=0,1,..,2015

    .

    Because P is a polynomial of dgree 2016, Q is a polynomial of dgree 2016. Q has 2016 solutions (0, 1, .. , 2015) so Q can be expressed in a form:

      Q(x)=a(x−0)(x−1)...(x−2015)

       (**)

    In other hand, in (*) we set x = -1 then  Q(−1)=1

    . And replace to (**) we have:

      1=Q(−1)=a(−1)(−2)...(−2016)

     ⇒a=12016!

    Finally Q(x)=12016!(x−0)(x−1)...(x−2015)

    ⇒Q(2016)=12016!2016.2015...1=1

    from (*) Q(2016)=(2016+1)P(2016)−2016

    ⇒(2016+1)P(2016)−2016=1

    ⇒P(2016)=20172017=1


4752

questions

Weekly ranking

  • ...

    falcon handsome

    This week's point: . Total: 0
  • ...

    Hà Đức Thọ

    This week's point: . Total: 0
  • ...

    Account Test

    This week's point: . Total: 0
  • ...

    Admin

    This week's point: . Total: 14
  • ...

    demo acc

    This week's point: . Total: 0
  • ...

    Nguyen The Thao

    This week's point: . Total: 0
  • ...

    acctest

    This week's point: . Total: 0
  • ...

    nguyễn ngọc bảo hân

    This week's point: . Total: 0
  • ...

    Chibi

    This week's point: . Total: 7
  • ...

    Grand Master

    This week's point: . Total: 0

Tags

games 18  double counting 8  generating functions 2  probabilistic method 1  Polynomial 9  inequality 13  area 16  Equation 9  Primitive Roots Modulo Primes 1  Primitive in Arithmetic Progression 6  Base n Representatioons 4  Pell Equation 1  mixed number 1  Fraction 29  Circle 3  Imaginary numbers 1  Decimal number 2  Volume 2  percentages 6  simple equation 19  absolute value 19  rational numbers 20  Operation of Indices 21  Simulataneous Equation A System of Equations 25  Multiplication of Polynomial 17  divisibility 24  Maximum 5  Minimum 8  Fraction 4  Prime Numbers and Composite Numbers 13  Square Number 26  Even and Odd Numbers 13  GDC and LCM 11  GCD and LCM 12  Permutation and combination 9  combinations 5  interger 7  number 10  Diophantine equations 2  equations 1  Grade 6 19  Power 3  equality 2  maxima-minima 2  square root 1  Polygon 2  IGCSE 1  factorial 1  integers 2 
© 2016 MATHYOULIKE
Crafted with by OLM.VN